文献の詳細
論文の言語 | 日本語 |
---|---|
著者 | 山田 良博, 岩村 雅一, 黄瀬 浩一 |
論文名 | PyramidNetに対する新たな確率的正則化手法ShakeDropの提案 |
論文誌名 | 電子情報通信学会技術研究報告 |
Vol. | 117 |
No. | 238 |
発表番号 | PRMU2017-72 |
ページ | pp.55-60 |
ページ数 | 6 pages |
発表場所 | 熊本大学, 熊本県熊本市 |
査読の有無 | 無 |
年月 | 2017年10月 |
要約 | 高精度な一般物体認識を実現するために, 確率的に学習を乱すことで認識精度を向上する,確率的な正則化手法が注目を集めている. 確率的な正則化を用いた一般物体認識手法の1つであるPyramidDropは,Randam Dropと呼ばれる確率的な正則化を導入することで発表当時の世界最高性能を実現した. しかし,Randam Dropは二値の乱数を用いて各Residual Unitを使うか使わないかを制御するため,正則化の効果が限定的と考えられる. 本稿では,最近提案された実数の乱数を用いる確率的な正則化をPyramidDropに導入することで,より高い認識精度の手法の実現を目指す. この乱数は,各Residual Unitをどの程度使うかを表す. 一般物体認識データセットCIFAR-10及びCIFAR-100を用いた実験の結果,提案手法ShakeDropは,現在のstate-of-the-artの手法に比べて、エラー率をCIFAR-10で0.25\%、CIFAR-100で3.01\%軽減して,現時点の世界最高精度を達成することを確認した. |
- 注記
2017年度 PRMU研究奨励賞受賞 - 次のファイルが利用可能です.
- BibTeX用エントリー
@InCollection{山田2017, author = {山田 良博 and 岩村 雅一 and 黄瀬 浩一}, title = {PyramidNetに対する新たな確率的正則化手法ShakeDropの提案}, booktitle = {電子情報通信学会技術研究報告}, year = 2017, month = oct, volume = {117}, number = {238}, presenID = {PRMU2017-72}, pages = {55--60}, numpages = {6}, location = {熊本大学, 熊本県熊本市} }