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Abstract 
When communicating numerical data to people with visual im-
pairments (PVI), summaries provided by current data visualization 
solutions tend to lose important information during summariza-
tion. To address this issue, our work focuses on summarization 
through bar grouping in bar graphs. Neither the effect of grouping 
nor the appropriate granularity of grouping has been discussed so 
far. Therefore, we investigate the cognitive effects of grouping and 
its relationship to the number of groups. A user study involving 
nine PVI (five blind and four with low vision) revealed that summa-
rization through bar grouping conveys information significantly 
more accurately compared to simply reading individual data points, 
despite the inherent error produced by grouping. Additionally, we 
propose a cognitive error model to explain the characteristics of 
the observed errors. 

CCS Concepts 
• Human-centered computing → Accessibility systems and 
tools. 
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1 Introduction 
Data visualization, including graphs, tables, and diagrams, is widely 
used to effectively convey key points of numerical data, allowing 
readers to understand and explore the information more easily. 
Graphs, in particular, are frequently used and can be found in 
various media, including news articles, financial reports, scientific 
papers, and web content. Sighted individuals can efficiently grasp 
the key points of numerical data from the shape of a graph and 
access key information, such as outliers, trends, notable high data 
points, and distribution patterns, without reading individual data 
points. 

However, people with visual impairments (PVI) are often ex-
cluded from the benefits of data visualization, making it difficult 
for them to access and understand numerical data. Conventional 
approaches, including the development of deep learning models for 
generating summaries [2, 5, 27, 29, 33, 42, 45] and data visualiza-
tion [3, 9, 16, 19–22, 26, 32, 36, 38–40], typically provide alternative 
text that describes data content using statistical values such as max-
imum, minimum, and average. However, they are less informative 
in conveying the key points with numerical data. In contrast, simply 
reading individual data points ensures that every detail of the data 
is conveyed, but understanding the information requires a massive 
mental effort, referred to as a high cognitive load. Consequently, 
PVI face difficulties in effectively accessing numerical data. One 
might assume that using large language models (LLMs) is sufficient 
for generating informative sentences in the desired form. However, 
there is no scientific verification of what type of summary would 
be most appropriate and its underlying reasons. 

This paper explores the grouping of bars with similar values 
to emulate the visual effect perceived by sighted individuals. To 
explain this, let us consider an example shown in Fig. 1(a), assum-
ing bars in a graph are arranged in descending order. As shown 
in Fig. 1(b), grouping bars with similar values helps to summarize 
the numerical data. Fig. 1(c) shows the generated summary, which 
helps to easily understand the overall information of the numerical 
data. Many people would agree that the cognitive load decreases as 
the number of bars decreases in a graph. Hence, the summarization 
into a smaller number of groups is easier to understand, but inher-
ently less accurate and conveys erroneous information. Conversely, 
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These countries are divided into 
three groups according to their 
values: , , 
and . 

1st and 2nd places 

The populations of the 1st-and-2nd-
places group show a gentle 
decrease. 

3rd place 

The population of the 3rd 
place country is about 20% of that of 
the 1st place. 

4th to 8th places 

The populations of the 
4th-to-8th-places group are about 
10% of that of the 1st place and show 
a steep decrease. 

(a) Original Bar Graph (b) Result of Grouping (c) Summary 

Figure 1: Overview of our summarization strategy. (a) The original bar graph about the ranking of the world population, 
arranged in descending order. (b) Clustering similar values into three groups. (c) Generated summary, which are automatically 
generated using a template-based method. 

the summarization into a larger number of groups provides more 
detailed information. However, this requires a higher cognitive load 
in hearing, remembering, and recalling the information, which can 
cause error. 

Therefore, we first investigate the effectiveness of bar grouping. 
We conducted a user study involving nine PVI (five blind and four 
with low vision). Participants were asked to recall numerical data 
in a bar graph after hearing a spoken description of the graph. The 
spoken description could be individual data points or a summarized 
description like Fig. 1(c). A statistical test revealed that summa-
rization through bar grouping conveys information significantly 
more accurately compared to simply reading individual data points. 
Second, we explore its underlying reasons. We address this issue 
by proposing a cognitive error model. We define observed error as 
the discrepancy between the actual values of individual data points 
in a bar graph and the values as perceived by the user. Our model 
allows us to decompose the observed error into two components: 
errors caused by summarization and the cognitive load required for 
comprehension. Our model helps us understand the characteristics 
of the observed error. 

The contributions of this paper are summarized below. 

(1) We demonstrate the effectiveness of summarization through 
bar grouping in bar graphs: we found that properly grouped 
summarization can lead to more precise understanding be-
cause of less cognitive load. 

(2) We propose an error model that explicitly accounts for the 
trade-off between errors caused by summarization and those 
caused by the cognitive load required for comprehension. 

2 Methods 
2.1 Generating Summary 
The process for generating a summary involves four main steps: 

(1) Data clustering into groups using the Ward method [44] 
with Euclidean distance, with a predetermined target number 
of groups denoted as 𝑁 . 

(2) Using relative ratios to the top rank to describe the data 
points instead of their absolute values. This ratio is always 

rounded to be an integer. If it is 9.5 or higher, it is described 
as “almost the same as the top rank value.” 

(3) Providing trend slopes within the groups. A simple lin-
ear regression is performed within each group, and the re-
gression coefficient determines whether the trend is gentle 
or steep. This analysis allows us to convey whether the trend 
within a group is significantly changing or stable. 

(4) Summary generation is performed using a template-based 
method, drawing on existing research from ChartVi [27]. 
This research shows that an introductory message describing 
basic chart information, such as the graph title, type, and 
labels of the 𝑋 and 𝑌 axes, should be presented first, as 
this information is important for PVI. Then, for each group, 
the ratio to the top rank and the trend within the group are 
explained in one sentence. The explanations of the ratios and 
trends are given separately for each group. A summarization 
example for three groups is shown in Fig. 1(c). 

2.2 Error model 
As shown in Fig. 2, we define following three errors. 

(a) Observed error: the discrepancy between the actual values 
of individual data points and the values as perceived by the 
user. 

(b) Quantization error: Errors resulting from information loss 
due to grouping, quantified as the sum of squared errors 
when approximating a bar graph with 𝑁 line segments, as 
in a piecewise linear regression of a scatter plot. 

(c) Cognitive error: Errors resulting from high cognitive load, 
making comprehension difficult. 

The quantization error and cognitive error have a trade-off relation-
ship. With a larger number of groups, the quantization error will 
be smaller because the summarization is detailed, but the cognitive 
error will be larger because PVI are more likely to miss graph con-
tent. Conversely, with a smaller number of groups, the quantization 
error will be larger because the summarization is rough, but the 
cognitive error will be smaller because it is easier to process. Finally, 
the observed error is the sum of these two kinds of errors, estimating 
how well the graph content is conveyed to PVI. 
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Figure 2: Overview of our error model: the observed error (a) is obtained by the quantization error (b) plus the cognitive error (c). 
(a) Observed error is directly measured in experiments. (b) Quantization error arises from summarization through bar grouping 
and depends on the number of groups. In this paper, we propose a method to calculate this. (c) Cognitive error cannot be directly 
measured, thus must be predicted. It is expected that under high cognitive load conditions, where the memory required to 
process the task exceeds the users’ working memory capacity, typically occurring with a larger number of groups, the error 
becomes uncertain and difficult to predict. This is because the behavior of users can vary under such conditions. 

3 Experiment 
This experiment investigates how the number of groups, 𝑁 , in 
summarization affects cognitive load and participants’ estimation 
abilities. We ask the participants to listen to an explanation of the 
graph and then estimate the individual data points represented 
by the bars. The explanations are categorized into two cases: non-
summarization, corresponding to simply reading individual data 
points, and summarization through bar grouping. 

3.1 Study Design 
Nine PVI (five blind and four with low vision) participated in the 
user study. They included seven males and two females, with ages 
ranging from 34 to 62 years (AVE: 50.0, SD: 9.72). Each participant 
received a 2,000 yen gift card as a reward. Participants were asked 
to listen to the audio description of the graph once and then report 
the estimated individual data points. The experiment consisted of 
an instruction on the experiment, practice answering, and a task 
session where participants listened to graph descriptions and esti-
mated individual data points. Finally, post-experiment interviews 
were conducted to complement our quantitative results and gain 
further insights into user needs. After the instruction and practic-
ing, participants were asked to recall the values of each bar in the 
graph described. 

In the non-summarization cases, ten individual data points of 
the graphs are read out. In the summarization cases, the summary 
for each graph is generated according to the process described in 
Section 2.1, with the randomly determined 𝑁 . Since the value of the 
top-ranked bar is not included in the summary, it is informed after 
the summary is read out. In both cases, participants were required 
to provide the values for the bars from the second place onward, 
either as a relative percentage (e.g., 80%) with the top bar as 100%, or 
as the actual value of the bar on the graph (e.g., 1300 people). If they 
were unsure, they were instructed to respond with “I don’t know.” or 

an appropriate numerical estimate. All experiments were conducted 
online via Zoom and lasted approximately 90 minutes. The number 
of questions ranged from 11 to 22, (AVE: 20.3, SD: 3.759), depending 
on the progress of the experiment, and participants were allowed 
to take breaks between questions. 

3.2 Result 
The observed error was calculated for each graph as the sum of 
the absolute differences between the true values of the individual 
data points and those reported by the participant. Fig. 3(a) displays 
the distribution and density of the points representing all observed 
errors for all participants. This density visualization helps to bet-
ter understand the shape of the distribution. Fig. 3(b) displays the 
distribution and density of the quantization errors calculated for 
all graphs examined by all participants. The number of points in 
these two graphs is the same. Following the proposed error model 
described in Section 2.2, for each graph, the cognitive error was 
calculated by subtracting the scaled quantization error, adjusted 
to match the range of the observed error, from the corresponding 
observed error. Fig. 3(c) displays the distribution and density of 
cognitive errors, which does not completely resemble Fig. 2(c), par-
ticularly in the right half of the graph. This is partially because, as 
mentioned in Fig. 2, we assume that the shape of the cognitive error 
curve can vary person-to-person or case-by-case. Therefore, further 
investigation with a larger number of participants is expected. 

We compared the difference in observed error between the non-
summarization and summarization cases as follows. First, in the 
summarization cases, for each participant, we identified the value 
of 𝑁 that minimized the observed error, denoted as 𝑁min. For most 
participants, 𝑁 = 4 and 𝑁 = 5 resulted in the smallest observed 
error. Exceptionally, for two participants, 𝑁 = 1 resulted in the 
smallest observed error, despite having the largest quantization error 
due to a lack of explained information. Then, the observed errors 
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(c) Cognitive Error 

Figure 3: Three types of errors obtained in the experiment for all participants. 

for 𝑁min for each participant were compared with those from the 
non-summarization cases. A one-sided Mann-Whitney U test was 
used to assess significant differences between the two. The p-value 
was 0.039, which is below 0.05, indicating that summarization signif-
icantly reduced the observed error compared to non-summarization. 

4 DISSCUSSION 

4.1 Relationship with other studies 
In the field of data visualization, specifically in generating sum-
maries or alternative text for PVI, we found that explanations that 
are either too abstract or overly detailed in describing individual 
data points are not effective. These findings are not covered by 
sonification [1, 4, 7, 10, 12, 14, 15, 25, 31, 37, 41, 46, 47] or tactile 
graphics [6, 8, 11, 13, 18, 30, 34, 43] alone. Recent trends indicate 
an increasing need for multi-modal interfaces to further enhance 
accessibility. 

The following papers are not directly related to grouping 
and graphs, but are particularly relevant to the field of Human-
Computer Interaction (HCI) in terms of aiming at improving nu-
merical comprehension. The use of perspective sentences [23, 35] 
explains numeric values in news stories, such as describing 7,700 
pounds as “about the weight of a car.” The use of rounded num-
bers [28] simplifies numerical information, such as presenting 3,792 
as 4,000. The use of analogies [17, 24] contextualizes unfamiliar 
numbers by relating them to familiar geographic entities, like 
re-expressing 251,827 square miles as “about the size of Texas.” 
Specially, research on rounded numbers addresses the trade-off 
between presenting rounded versus precise numbers. Although 
rounding results in an initial loss of precision, it can lead to greater 
accuracy in subsequent recall and estimation. Our proposed model 
may align with this concept by incorporating three types of errors. 

4.2 Limitations 
Our research investigated the effect of grouping on sorted bar 
graphs, with several notable limitations. Our findings cannot be 
directly applied to other graph types such as histograms, time series 
bar graphs, line graphs, and scatter plots. However, it is conceivable 
that these graphs could be approximated to a level of granularity 
where our findings might be applicable in textual representations. 

5 CONCLUSSION 
This paper contributed twofold. First, we demonstrated the effec-
tiveness of summarization through bar grouping in bar graphs. 
We found that properly grouped summarization can lead to more 
precise understanding because of less cognitive load. We aimed to 
investigate the cognitive effects of grouping bar graph information 
for PVI. We found that graph explanations with a properly grouped 
summarization provide significantly more precise comprehension 
than reading individual data points. We verified the trade-off be-
tween errors caused by summarization and those caused by the 
cognitive load required for comprehension. It may seem obvious 
that overall summarizations are easier to recall than precise de-
tails, but our findings show that grouping can actually improve 
accessibility. 
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