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ABSTRACT Overfitting is a crucial problem in deep neural networks, even in the latest network architec-
tures. In this paper, to relieve the overfitting effect of ResNet and its improvements (i.e., Wide ResNet,
PyramidNet, and ResNeXt), we propose a new regularization method called ShakeDrop regularization.
ShakeDrop is inspired by Shake-Shake, which is an effective regularization method, but can be applied to
ResNeXt only. ShakeDrop is more effective than Shake-Shake and can be applied not only to ResNeXt but
also ResNet, Wide ResNet, and PyramidNet. An important key is to achieve stability of training. Because
effective regularization often causes unstable training, we introduce a training stabilizer, which is an unusual
use of an existing regularizer. Through experiments under various conditions, we demonstrate the conditions
under which ShakeDrop works well.

INDEX TERMS Computer vision, image classification, neural networks.

I. INTRODUCTION
Recent advances in generic object recognition have been
achieved using deep neural networks. Since ResNet [11]
created the opportunity to use very deep convolutional neural
networks (CNNs) of over a hundred layers by introducing the
building block, its improvements, such as Wide ResNet [36],
PyramidNet [8], [9], and ResNeXt [33] have broken records
for the lowest error rates.

The development of such base network architectures, how-
ever, is not sufficient to reduce the generalization error (i.e.,
difference between the training and test errors) due to over-
fitting. In order to improve test errors, regularization methods
which are processes to introduce additional information to
CNNs have been proposed [23]. Widely used regularization
methods include data augmentation [18], stochastic gradient
descent (SGD) [37], weight decay [20], batch normalization
(BN) [15], label smoothing [28], adversarial training [6],
mixup [29]–[31], [38], and dropout [26], [32]. Because the
generalization errors when regularization methods are used
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are still large, effective regularization methods have been
studied.

Recently, an effective regularization method which
achieved the lowest test error called Shake-Shake regulariza-
tion [4], [5] was proposed. It is an interesting method, which,
in training, disturbs the calculation of the forward pass using
a random variable, and also that of the backward pass using a
different random variable. Its effectiveness was proven by an
experiment on ResNeXt, to which Shake-Shake was applied
(hereafter, this type of combination is denoted by ‘‘ResNeXt
+ Shake-Shake’’), which achieved the lowest error rate on
CIFAR-10/100 datasets [17]. Shake-Shake, however, has the
following two drawbacks: (i) it can be applied to ResNeXt
only, and (ii) the reason it is effective has not yet been
identified.

The current paper addresses these problems. For prob-
lem (i), we propose a novel powerful regularization method
called ShakeDrop regularization, which is more effective
than Shake-Shake. Its main advantage is that it has the
potential to be applied not only to ResNeXt (hereafter,
three-branch architectures) but also ResNet, Wide ResNet,
and PyramidNet (hereafter, two-branch architectures). The
main difficulty to overcome is unstable training. We solve
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FIGURE 1. Regularization methods for the ResNet family. (a) and (b) are existing methods. (c) is an intermediate regularization method used to derive the
proposed method. (d) is the proposed method. ‘‘Conv’’ denotes a convolution layer; E [x] denotes the expected value of x ; and α, β, and bl denote random
coefficients.

this problem by proposing a new stabilizing mechanism for
difficult-to-train networks. For problem (ii), in the process
of deriving ShakeDrop, we provide an intuitive interpretation
of Shake-Shake. Additionally, we present the mechanism in
which ShakeDrop works. Through experiments using vari-
ous base network architectures and parameters, we demon-
strate the conditions under which ShakeDrop successfully
works.

This paper is an extended version of ICLR workshop
paper [35].

II. REGULARIZATION METHODS FOR THE
RESNET FAMILY
In this section, we present two regularization methods for the
ResNet family, both of which are used to derive the proposed
method.

Shake-Shake regularization [4], [5] is an effective reg-
ularization method for ResNeXt. It is illustrated in Fig. 1.
The basic ResNeXt building block, which has a three-branch
architecture, is given as

G(x) = x + F1(x)+ F2(x), (1)

where x and G(x) are the input and output of the building
block, respectively, and F1(x) and F2(x) are the outputs of
two residual branches.

Let α and β be independent random coefficients uniformly
drawn from the uniform distribution on the interval [0, 1].
Then Shake-Shake is given as

G(x) =


x + αF1(x)+ (1− α)F2(x), in train-fwd
x + βF1(x)+ (1− β)F2(x), in train-bwd
x + E[α]F1(x)+ E[1− α]F2(x), in test,

(2)

where train-fwd and train-bwd denote the forward and back-
ward passes of training, respectively. Expected valuesE[α] =
E[1 − α] = 0.5. Equation (2) means that the calculation of
the forward pass is multiplied by random coefficient α and
that of the backward pass by another random coefficient β.
The values of α and β are drawn for each image or batch. In
this paper, we suggest training for longer than usual (more
precisely, six times as long as usual).

In the training of neural networks, if the output of a residual
branch is multiplied by coefficient α in the forward pass, then
it is natural to multiply the gradient by the same coefficient
(i.e., α) in the backward pass. Hence, compared with the stan-
dard approach, Shake-Shake makes the gradient β/α times
as large as the correctly calculated gradient on one branch
and (1− β)/(1− α) times on the other branch. It seems that
the disturbance prevents the network parameters from being
captured in local minima. However, the reason why such a
disturbance is effective has not been sufficiently identified.
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RandomDrop regularization (a.k.a., Stochastic Depth
and ResDrop) [14] is a regularization method originally
proposed for ResNet, and also applied to PyramidNet [34].
It is illustrated in Fig. 1(b). The basic ResNet building block,
which has a two-branch architecture, is given as

G(x) = x + F(x), (3)

where F(x) is the output of the residual branch. Random-
Drop makes the network appear to be shallow in learning by
dropping some stochastically selected building blocks. The
l th building block from the input layer is given as

G(x) =


x + blF(x), in train-fwd
x + blF(x), in train-bwd
x + E[bl]F(x), in test,

(4)

where bl ∈ {0, 1} is a Bernoulli random variable with the
probability P(bl = 1) = E[bl] = pl . In this paper, we rec-
ommend the linear decay rule to determine pl , which is given
as

pl = 1−
l
L
(1− PL), (5)

where L is the total number of building blocks and pL is the
initial parameter. We suggest using pL = 0.5.
RandomDrop can be regarded as a simplified version of

dropout [26]. The main difference is that RandomDrop drops
layers, whereas dropout drops elements.

III. PROPOSED METHOD
A. SHAKEDROP REGULARIZATION
The proposed ShakeDrop, illustrated in Fig. 1(d), is given as

G(x) =


x + (bl + α − blα)F(x), in train-fwd
x + (bl + β − blβ)F(x), in train-bwd
x + E[bl + α − blα]F(x), in test,

(6)

where bl is a Bernoulli random variable with probability
P(bl = 1) = E[bl] = pl given by the linear decay rule (5)
in each layer, and α and β are independent uniform random
variables in each element. The most effective ranges of α and
β were experimentally found to be different from those of
Shake-Shake, and are α = 0, β ∈ [0, 1] and α ∈ [−1, 1],
β ∈ [0, 1]. Further details of the parameters are presented in
Sections IV and V.

In the training phase, bl controls the behavior of Shake-
Drop. If bl = 1, then (6) is deformed as

G(x) =

{
x + F(x), in train-fwd
x + F(x), in train-bwd;

(7)

that is, ShakeDrop is equivalent to the original network (e.g.,
ResNet). If bl = 0, then (6) is deformed as

G(x) =

{
x + αF(x), in train-fwd
x + βF(x), in train-bwd;

(8)

that is, the calculation of F(x) is perturbed by α and β.

B. DERIVATION OF SHAKEDROP
1) INTERPRETATION OF SHAKE-SHAKE REGULARIZATION
We provide an intuitive interpretation of Shake-Shake; to
the best of our knowledge, it has not been provided yet. As
shown in (2) (and in Fig. 1), in the forward pass, Shake-Shake
interpolates the outputs of two residual branches (i.e., F1(x)
and F2(x)) with random weight α. DeVries and Taylor [2]
demonstrated that the interpolation of two data in the feature
space can synthesize reasonable augmented data; hence the
interpolation in the forward pass of Shake-Shake can be
interpreted as synthesizing reasonable augmented data. The
use of randomweight α enables us to generate many different
augmented data. By contrast, in the backward pass, a different
random weight β is used to disturb the updating parameters,
which is expected to help to prevent parameters from being
caught in local minima by enhancing the effect of SGD [16].

2) SINGLE-BRANCH SHAKE REGULARIZATION
The regularization mechanism of Shake-Shake relies on
two or more residual branches; hence, it can only be
applied to three-branch network architectures (i.e., ResNeXt).
To achieve a similar regularization to Shake-Shake on
two-branch architectures (i.e., ResNet, Wide ResNet, and
PyramidNet), we need a different mechanism from interpo-
lation in the forward pass that can synthesize augmented
data in the feature space. In fact, DeVries and Taylor [2]
demonstrated not only interpolation but also noise addition
in the feature space, which generates reasonable augmented
data. Hence, following Shake-Shake, we apply random per-
turbation to the output of a residual branch (i.e., F(x) of (3));
that is, it is given as

G(x) =


x + αF(x), in train-fwd
x + βF(x), in train-bwd
x + E[α]F(x), in test.

(9)

We call this regularization method Single-branch Shake. It
is illustrated in Fig. 1(c). Single-branch Shake is expected to
be as effective as Shake-Shake. However, it does not work
well in practice. For example, in our preliminary experiments,
we applied it to 110-layer PyramidNet with α ∈ [0, 1] and
β ∈ [0, 1] following Shake-Shake. However, the result on
the CIFAR-100 dataset was significantly bad (i.e., an error
rate of 77.99%).

3) STABILIZATION OF TRAINING
In this section, we consider what caused the failure of Single-
branch Shake. A natural guess is that Shake-Shake has a
stabilizing mechanism that Single-branch Shake does not
have. The mechanism is ‘‘two residual branches.’’ We present
an argument to verify whether this is the case. As presented
in Section II, in training, Shake-Shake makes the gradients of
two branches β/α times and (1 − β)/(1 − α) times as large
as the correctly calculated gradients. Thus, when α is close to
zero or one, it cannot converge (ruin) training because it could
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TABLE 1. Regularization methods that generate new data. ‘‘Sample-wise generation’’ means that data is generated using a single sample.

make a gradient prohibitively large.1 However, two residual
branches of Shake-Shake work as a fail-safe system; that is,
even if the coefficient on one branch is large, the other is kept
small. Hence, training on at least one branch is not ruined.
Single-branch Shake, however, does not have such a fail-safe
system.

From the discussion above, the failure of Single-branch
Shake was caused by the perturbation being too strong and
the lack of a stabilizing mechanism. Because weakening the
perturbation would just weaken the effect of regularization,
we need a method to stabilize unstable learning under strong
perturbation.

We propose using the mechanism of RandomDrop to solve
the issue. RandomDrop is designed to make a network appar-
ently shallow to avoid the problems of vanishing gradients,
diminishing feature reuse, and a long training time. In our sce-
nario, the original use of RandomDrop does not have a posi-
tive effect because a shallower version of a strongly perturbed
network (e.g., a shallow version of ‘‘PyramidNet + Single-
branch Shake’’) would also suffer from strong perturbation.
Thus, we use the mechanism of RandomDrop as a probabilis-
tic switch for the following two network architectures:

1) the original network (e.g., PyramidNet), which corre-
sponds to (7), and

2) a network that suffers from strong perturbation (e.g.,
‘‘PyramidNet + Single-branch Shake’’), which corre-
sponds to (8).

By mixing them up, as shown in Fig. 2, it is expected that
(i) when the original network is selected, learning is correctly
promoted, and (ii) when the network with strong perturbation
is selected, learning is disturbed.

To achieve good performance, the two networks should
be well balanced, which is controlled by parameter pL . We
discuss this issue in Section IV.

C. RELATIONSHIP WITH EXISTING
REGULARIZATION METHODS
In this section, we discuss the relationship between Shake-
Drop and existing regularization methods. Among them,

1This idea is supported by an experiment that limited the ranges of α and
β in Shake-Shake [4]. When α and β were kept close (more precisely, on the
number line, α and β were on the same side of 0.5, such as α = 0.1 and
β = 0.2), Shake-Shake achieved relatively high accuracy. However, when α
and β were kept far apart (α and β were on the opposite sides of 0.5, such as
α = 0.1 and β = 0.7), the accuracy was relatively low. This indicates that
when β/α or (1− β)/(1− α) were large, training could become less stable.

FIGURE 2. Conceptual sketch of converging trajectories. The original
networks called Vanilla (7) can converge but become trapped in local
minima. Single-branch Shake (8), which updates the parameters with the
strong perturbation, does not become trapped in local minima but cannot
converge. Using the probabilistic switches of (7) and (8), ShakeDrop is
expected to not become in local minima and to converge to a better
minimum.

SGD and weight decay are commonly used techniques in
the training of deep neural networks. Although they were
not designed for regularization, researchers have indicated
that they have generalization effects [20], [37]. BN [15] is a
strong regularization technique that has been widely used in
recent network architectures. ShakeDrop is appended to these
regularization methods.

ShakeDrop differs from RandomDrop [14] and dropout
[26], [32] in the following two ways: they do not explicitly
generate new data and they do not update network parameters
based on noisy gradients. ShakeDrop coincides with Ran-
domDrop when α = β = 0 instead of the recommended
parameters.

Somemethods regularize by generating new data. They are
summarized in Table 1. Data augmentation [18] and adversar-
ial training [6] synthesize data in the (input) data space. They
differ in how they generate data. The former uses manually
designed means, such as random crop and horizontal flip,
whereas the latter automatically generates data that should
be used for training to improve generalization performance.
Label smoothing [28] generates (or changes) labels for exist-
ing data. The methods mentioned above generate new data
using a single sample. By contrast, some methods require
multiple samples to generate new data. Mixup [38], BC learn-
ing [30], and RICAP [29] generate new data and their cor-
responding class labels by interpolating two or more data.
Although they generate new data in the data space, manifold
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TABLE 2. [Ranges of α and β] Average top-1 errors (%) of ‘‘ResNet + ShakeDrop,’’ ‘‘ResNet (EraseReLU version) + ShakeDrop,’’ and ‘‘PyramidNet +
ShakeDrop’’ of four runs at the final (300th) epoch on the CIFAR-100 dataset using the batch-level update rule. ‘‘×’’ indicates that learning did not
converge. Cases A and B are equivalent to not including the regularization method (we call this Vanilla) and RandomDrop, respectively.

TABLE 3. [Update rule of α and β] Average top-1 errors (%) of
‘‘PyramidNet + ShakeDrop’’ for four runs at the final (300th) epoch on the
CIFAR-100 dataset.

mixup [31] also does it in the feature space. Compared with
ShakeDrop, which generates data in the feature space using
a single sample, none of these regularization methods are in
the same category, except for Shake-Shake.

Note that the selection of regularization methods is not
always exclusive. We have successfully used ShakeDrop
combined with mixup (see Section V-D). Although regu-
larization methods in the same category may not be used
together (e.g., ‘‘mixup and BC learning’’ and ‘‘ShakeDrop
and Shake-Shake’’), those of different categories may be used
together. Thus, developing the best method in a category is
meaningful.

IV. PRELIMINARY EXPERIMENTS
ShapeDrop has three parameters: α, β, and pL . Additionally,
four possible update rules of α and β exist. In this section,
we search for the best parameters of α and β and best update
rule on the CIFAR-100 dataset. The best parameters found
are used in the experiments in Section V. Following Random-
Drop regularization [14], we used pL = 0.5 as the default.

A. RANGES OF α AND β

The best parameter ranges of α and β were experimen-
tally explored. We applied ShakeDrop to three network
architectures: ResNet, ResNet (EraseReLU version), and
PyramidNet. In the EraseReLU version, the rectified lin-
ear unit (ReLU) at the bottom of the building blocks was
erased [3]. Note that EraseReLU does not affect PyramidNet

because it does not have the ReLU at the bottom of the
building blocks.

Table 2 shows the representative parameter ranges of α and
β that we tested and their results. Cases A and B correspond
to the vanilla network (i.e., without regularization) and Ran-
domDrop, respectively. On all three network architectures,
case B was better than case A. We consider the results of the
three network architectures individually.
• PyramidNet achieved the lowest error rates among the
three network architectures. Only cases N and O outper-
formed case B. Among them, case O was the best.

• ResNet had a different tendency from PyramidNet: case
O, which was the best on PyramidNet, did not converge.
Only case G outperformed case B.

• ResNet (EraseReLU version) had the characteristics of
both PyramidNet and ResNet; that is, both cases O and
G outperformed case B. Case G was the best.

Through experiments using various base network architec-
tures shown in Section V, we found that case O was effective
on ‘‘EraseReLU’’ed architectures. By contrast, case G was
effective on non-‘‘EraseReLU’’ed architectures.

B. UPDATE RULE OF α AND β

The best update rule of α and β was found from the batch,
image, channel, and pixel levels. ShakeDrop is determined to
drop or not on each building block. Differently from Dropout
and RandomDrop, even if a building block is determined to
be dropped, we still have a freedom to choose how α and β
are determined. That is, α and β can be drawn for each batch
in parallel, each image on a batch in parallel, each channel,
or each element.

In the experiment, the best α and β found in Section IV-A
(i.e., α = 0 and β ∈ [0, 1] for ResNet, and α ∈ [−1, 1] and
β ∈ [0, 1] for PyramidNet), were used.2 Table 3 shows that
the pixel level was the best for both ResNet and PyramidNet.

2Table 3 contains cells with a hyphen (‘‘-’’). We did not conduct experi-
ments in these settings because they were not expected to improve the error
rates in the experiment, as shown in Section IV-A.
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TABLE 4. [Combinations of (α, β)] Top-1 errors (%) of ‘‘PyramidNet + ShakeDrop’’ at the final (300th) epoch on the CIFAR-100 dataset in the batch-level
update rule. Combinations of α and β used in each case are marked. Results with ∗ are quoted from Table 2.

C. COMBINATIONS OF (α, β) FOR ANALYZING
SHAKEDROP BEHAVIOR
Although we successfully found effective ranges of α and β,
and their update rule, we still do not understand what mech-
anism contributes to improving the generalization perfor-
mance of ShakeDrop. One reason is that α and β are random
variables. Because of this, at the end of training, we can
obtain a network that is trained using various observed values
of α and β. This makes it more difficult to understand the
mechanism.

Hence, in this section, we explore effective combina-
tions of (α, β). The combinations of (α, β) are defined as
follows: From the best ranges of α and β for Pyramid-
Net, which are α ∈ [−1, 1] and β ∈ [0, 1], by tak-
ing both ends of ranges, we obtain a set of (α, β) pairs:
{(1, 1), (1, 0), (−1, 1), (−1, 0)}. Then, we examine all its
combinations, which are shown in Table 4. Intuitively, when
bl = 0, instead of drawing α and β in the ranges, a pair (α, β)
is selected from its pool with equal probability.

Table 4 shows combinations of (α, β) and their results on
PyramidNet. Compared with the best result in Table 2 (i.e.,
caseO; 16.22%), the results in Table 4 are almost comparable.
In particular, the best result in Table 4 (i.e., case i; 16.24%)
is almost equivalent. This indicates that the random drawing
of α and β in certain ranges is not the primary factor for
improving error rates.

Additionally, we observe that pL is important to error
rates. As mentioned above, (1, 1) is the normal state. Hence,
the difference between cases i and l exists only in pL : because
case i has two elements and one of them is the normal state
(i.e., (1, 1)), its pL actually works as (1+pL)/2. For example,
when pL = 0.5, case i is equivalent to case l with pL = 0.75.
Cases j and m, and cases n and k have the same relationship.
A comparison of their error rates shows that pL greatly affects
the error rates. We discuss this issue in Section V-E.

For further analysis, we focus on the difference among
(1, 0), (−1, 1), and (−1, 0).
What does (α, β) = (1, 0) do? (What the meaning of

β = 0?)

α = 1 indicates that the forward pass is normal. Hence,
no regularization effect is expected. When β = 0, the net-
work parameters of the layers selected for perturbat ion (i.e.,
the layers with bl = 0) are not updated. In layers other than
the selected layers, the network parameters are updated as
usual. One exception is that, as the network parameters of
the selected layers are not updated, other layers compensate
for the amount that should be updated on the selected layers.
Cases n and k contain (1, 0). They were slightly worse than
the best cases.

What does (α, β) = (−1, 1) do? (What the meaning of
α = −1?)
When α = −1, in the selected layers, the calculation of the

forward pass is perturbed by α = −1. Then, the effect of per-
turbation is propagated to the succeeding layers. Hence, not
only the selected layers but also their succeeding layers are
perturbed. In the backward pass, when α is negative, the net-
work parameters of the selected layers are updated toward
the opposite direction to usual. Because of this, the network
parameters of the selected layers are strongly perturbed by
negative α. This can be a destructive update. In layers other
than the selected layers, it is less probable that the update
of the network parameters is destructive because they follow
the normal update rule (equivalent to α = 1). Cases j and m
contain (−1, 1). The former was slightly worse than the best
and the latter was significantly bad.

What does (α, β) = (−1, 0) do?
As this is a combination of α = −1 and β = 0, their com-

bined effect occurs. Following the case of α = −1 mentioned
above, the calculation of the forward pass is perturbed, and its
effect is propagated to the succeeding layers. In the backward
pass, following the case of β = 0, the network parameters
of only the selected layers are not updated. This can avoid
destructive updates caused by negative α. Hence, (−1, 0) is
expected to be effective. Cases i and l contained (−1, 0), and
the former was the best.

By extending the discussion above, we can interpret the
behavior of ShakeDrop using α = 0 and β ∈ [0, 1], which
was the most effective on ResNet. When α = 0, in the
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TABLE 5. [Comparison on CIFAR datasets] Top-1 errors (%) on CIFAR datasets. This table shows the results of the original networks (left) and modified
networks (right). Modified networks refer to the ‘‘EraseReLU’’ed versions in (a) and (c) and networks in which BN was inserted at the end of residual
branches in (b). In ShakeDrop, α = 0, β ∈ [0,1] was used in the original networks and α ∈ [−1,1], β ∈ [0,1] was used in the modified networks. In both
cases, pL = 0.5 and the pixel-level update rule were used. ‘‘×’’ indicates that learning did not converge. ∗ indicates that the result is quoted from the
literature. + indicates the average result of four runs.

forward pass, the outputs of the selected layers are identical
to the inputs. In the backward pass, the amount of updating
of the network parameters is perturbed by β.

V. EXPERIMENTS
A. COMPARISON ON CIFAR DATASETS
The proposed ShakeDrop was compared with RandomDrop
and Shake-Shake in addition to the vanilla network (without
regularization) on ResNet,Wide ResNet, ResNeXt, and Pyra-
midNet. Implementation details are available in Appendix A.

Table 5 shows the conditions and experimental results
on CIFAR datasets [17]. In the table, method names are
followed by the components of their building blocks. We
used the parameters of ShakeDrop found in Section IV; that
is, the original networks used α = 0, β ∈ [0, 1] and
the modified networks in which the residual branches end
with BN (e.g., EraseReLU versions) used α ∈ [−1, 1],

β ∈ [0, 1]. In ResNet and two-branch ResNeXt, in addition
to the original form, EraseReLU versions were examined. In
Wide ResNet, BN was added to the end of residual branches
so that the residual branches ended with BN. In three-branch
ResNeXt, we examined two approaches, referred to as ‘‘Type
A’’ and ‘‘Type B,’’ to apply RandomDrop and ShakeDrop.
‘‘Type A’’ and ‘‘Type B’’ indicate that the regularization unit
was inserted after and before the addition unit for residual
branches, respectively; that is, on the forward pass of the
training phase, Type A is given by

G(x) = x + D(F1(x)+ F2(x)), (10)

where D(·) is a perturbation unit of RandomDrop or Shake-
Drop, and Type B is given by

G(x) = x + D1(F1(x))+ D2(F2(x)), (11)

where D1(·) and D2(·) are individual perturbation units.

VOLUME 7, 2019 7
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TABLE 6. [Comparison on ImageNet] Top-1 errors (%) on ImageNet. This table shows the results of the original networks (left) and modified networks in
which BN is at the end of the residual block (right). In ShakeDrop, α = 0, β ∈ [0,1] were used in the original networks and α ∈ [−1,1], β ∈ [0,1] in the
modified networks. In both cases, pL = 0.9 and the pixel-level update rule were used.

Table 5 shows that ShakeDrop can be applied not only
to three-branch architectures (ResNeXt) but also two-branch
architectures (ResNet, Wide ResNet, and PyramidNet), and
ShakeDrop outperformed RandomDrop and Shake-Shake,
except for some cases. In Wide ResNet with BN, although
ShakeDrop improved the error rate compared with the vanilla
network, it did not compared with RandomDrop. This is
because the network only had 28 layers. As shown in the
RandomDrop paper [14], RandomDrop is less effective on
a shallow network and more effective on a deep network. We
observed the same phenomenon in ShakeDrop, and Shake-
Drop is more sensitive than RandomDrop. See Section V-E
for more detail.

B. COMPARISON ON THE IMAGENET DATASET
We also conducted experiments on the ImageNet classifica-
tion dataset [19] using ResNet, ResNeXt, and PyramidNet
of 152 layers. The implementation details are presented in
Appendix A. We used the best parameters found on the
CIFAR datasets, except for pL . We experimentally selected
pL = 0.9.
Table 6 shows the experimental results. Contrary to

the CIFAR cases, the EraseReLU versions were worse
than the original networks, which does not support the claim
of the EraseReLU paper [3]. On ResNet and ResNeXt, in both
the original and EraseReLU versions, ShakeDrop clearly out-
performed RandomDrop and the vanilla network (ShakeDrop
gained 0.84% and 0.15% compared with the vanilla net-
work in the original networks, respectively). On PyramidNet,
ShakeDrop outperformed the vanilla network (ShakeDrop
gained 0.60% compared with the vanilla network) and also
RandomDrop (ShakeDrop gained by 0.29% compared with
RandomDrop). Therefore, on ResNet, ResNeXt, and Pyra-
midNet, ShakeDrop clearly outperformed RandomDrop and
the vanilla network.

C. COMPARISON ON THE COCO DATASET
From the results in Sections V-A and V-B, we considered
that ShakeDrop promoted the generality of feature extraction
and we evaluated the generality on the COCO dataset [22].
We used Faster R-CNN and Mask R-CNN with the

TABLE 7. [Comparison on COCO datasets] Average precision (%) on the
COCO minival dataset. ‘‘Det.’’ denotes the average precision of object
detection and ‘‘Seg.’’ denotes the average precision of instance
segmentation.

TABLE 8. [Mixup + ShakeDrop] Error rates (%) of mixup + ShakeDrop.

ImageNet pre-trained original version ResNet of 152 layers
in Section V-B. The implementation details are presented in
Appendix A.

Table 7 shows the experimental results. On Faster R-CNN
and Mask R-CNN, ShakeDrop clearly outperformed Ran-
domDrop and the vanilla network. Therefore, ShakeDrop
promoted the generality of feature extraction not only
for image classification but also detection and instance
segmentation.

D. SIMULTANEOUS USE OF SHAKEDROP WITH MIXUP
As mentioned in Section III-C, we have successfully used
ShakeDrop combined with mixup. Table. 8 shows the
results. In most cases, ShakeDrop further improved the
error rates of the base neural networks to which mixup
was applied. This indicates that ShakeDrop is not a rival
to other regularization methods, such as mixup, but a
‘‘collaborator.’’

E. RELATIONSHIP BETWEEN NETWORK DEPTH
AND BEST PL
As mentioned in Section II, it has been experimentally found
that RandomDrop is more effective on deeper networks (see

8 VOLUME 7, 2019
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TABLE 9. [pL and depth] Top-1 errors (%) of ‘‘ResNet + ShakeDrop’’ and ‘‘PyramidNet + ShakeDrop’’ at the final (300th) epoch. In ShakeDrop,
α = 0, β ∈ [0,1] were used in ResNet and α ∈ [−1,1], β ∈ [0,1] in PyramidNet. CIFAR-100 dataset in the channel-level update rule. + indicates the average
result of four runs.

the figure on the right in Fig. 8 of [14]). We performed similar
experiments on ShakeDrop and RandomDrop to compare
their sensitivity to the depth of networks.

Table 9 shows that the error rates varied over both pL
and the network depth. ShakeDrop with a large pL tended
to be effective in shallower networks. The same observation
was obtained in the experimental study on the relationship
between pL of RandomDrop and generalization perfor-
mance [14]. We recommend a large pL for shallower network
architectures.

VI. CONCLUSION
We proposed a new stochastic regularization method called
ShakeDrop which, in principle, can be applied to the ResNet
family. Through experiments on the CIFAR and ImageNet
datasets, we confirmed that, in most cases, ShakeDrop out-
performed existing regularization methods of the same cate-
gory, that is, Shake-Shake and RandomDrop.

APPENDIXES
APPENDIX A
EXPERIMENTAL CONDITIONS
All networks were trained using back-propagation by SGD
with the Nesterov accelerated gradient [24] and momentum
method [25]. Four GPUs (on CIFAR) and eight GPUs (on
ImageNet) were used for learning acceleration: because of
parallel processing, different observations of bl , α, and β
were obtained on each GPU. For example, the l-th layer on a
GPU could be perturbed, whereas the layer was not perturbed
on other GPUs (l is an arbitrary number). Additionally, even
if the layer was perturbed on multiple GPUs, the differ-

ent observations of α and β could be used depending on
each GPU.

All implementations used in the experiments were based
on the publicly available code of ResNet,3 ResNeXt,4 Pyra-
midNet,5 Wide ResNet,6 Shake-Shake,7 and Faster/Mask
R-CNN.8 We changed their various learning conditions
to make them as common as possible on CIFAR (in
Section V-A). Table 10 shows the main changes. The
implementation is available at https://github.com/
imenurok/ShakeDrop.

The experimental conditions for each type of dataset are
described below.

CIFAR datasets The input images of CIFAR datasets [17]
were processed in the following manner. The original images
of 32×32 pixels were color-normalized and then horizontally
flipped with a 50% probability. Then, they were zero-padded
to be 40 × 40 pixels and randomly cropped to be images
of 32 × 32 pixels. On PyramidNet, the initial learning rate
was set to 0.1 on CIFAR-10 and 0.5 on CIFAR-100 following
the PyramidNet paper [8]. Other than PyramidNet, the initial
learning rate was set to 0.1. The initial learning rate was
decayed by a factor of 0.1 at 150 epochs and 225 epochs
of the entire learning process (300 epochs), respectively.
Additionally, a weight decay of 0.0001, momentum of 0.9,
and batch size of 128 were used on four GPUs. ‘‘MSRA’’ [10]

3https://github.com/facebook/fb.resnet.torch
4https://github.com/facebookresearch/ResNeXt
5https://github.com/jhkim89/PyramidNet
6https://github.com/szagoruyko/

wide-residual-networks
7https://github.com/xgastaldi/shake-shake
8https://github.com/facebookresearch/

maskrcnn-benchmark
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TABLE 10. [Learning conditions on CIFAR datasets] Learning conditions of the original experiments and our experiments. ‘‘Init.’’ denotes the initial
learning rates (CIFAR-10/CIFAR-100). ‘‘Total’’ denotes the total epoch number and ‘‘WD’’ denotes the weight decay. ‘‘it.’’ denotes iterations and ’’ep.’’
denotes epochs. ‘‘−’’ indicates that a value was not specified in the original paper. Bold items for our experiments indicate changes from the original
conditions. We used the most common conditions for the original conditions, except for the initial learning rates and number of GPUs. Other than ResNet,
the original learning rates were used in the experiments. On ResNet, the learning rate was 0.1 because our learning rate schedule did not warm up the
training for the first 0.4k iterations. We used four GPUs to accelerate learning as much as possible.

was used as the filter parameter initializer. We evaluated the
top-1 errors without any ensemble technique. Linear decay
parameter pL = 0.5 was used following the RandomDrop
paper [14]. ShakeDrop used parameters of α = 0, β = [0, 1]
(Original) and α = [−1, 1], β = [0, 1] (EraseReLU on
ResNet and ResNeXt, Wide ResNet with BN, and Pyramid-
Net) with the pixel-level update rule.

ImageNet dataset The input images of ImageNet [1] were
processed in the following manner. The original image was
distorted using a random aspect ratio [27] and randomly
cropped to an image size of 224×224 pixels. Then, the image
was horizontally flipped with a 50% probability and standard
color noise [19] was added. On PyramidNet, the initial learn-
ing rate was set to 0.5. The initial learning rate was decayed
by a factor of 0.1 at 60, 90, and 105 epochs of the entire
learning process (120 epochs) following [8]. Additionally,
a batch size of 128 was used on eight GPUs. Other than
PyramidNet, the initial learning rate was set to 0.1. The
initial learning rate was decayed by a factor of 0.1 at 30,
60, and 80 epochs of the entire learning process (90 epochs)
following [7]. Additionally, a batch size of 256 was used
on eight GPUs. A weight decay of 0.0001 and momentum
of 0.9 were used. ‘‘MSRA’’ [10] was used as the filter param-
eter initializer. We evaluated the top-1 errors without any
ensemble technique on the single 224 × 224 image that was
cropped from the center of an image resized with the shorter
side 256. pL = 0.9 was used as the linear decay parameter.
ShakeDrop used parameters of α = 0, β = [0, 1] (Origi-
nal) and α = [−1, 1], β = [0, 1] (EraseReLU on ResNet
and ResNeXt, and PyramidNet) with the pixel-level update
rule.

COCO dataset Input images of COCO [22] were pro-
cessed in the following manner. We trained models on the
union of the 80k training set and 35k val subset, and eval-
uated the models on the remaining 5k val subset. We used
ResNet-152 for the backbone network and FPN [21] for the
predictor network. To use ResNet-152 as a feature extrac-
tor, we used the expected value E(bl + α − blα) instead
of ShakeDrop regularization. According to the experimental
condition of the ImageNet dataset, the original image was
color-normalized with the means and standard deviations of

ImageNet dataset images. The initial learning rate was set
to 0.2. The initial learning rate was decayed by a factor
of 0.1 at 60, 000 and 80, 000 iterations of the entire learn-
ing process (90,000 iterations). Additionally, a batch size
of 16 was used on eight GPUs. A weight decay of 0.0001 was
used. The other experimental conditions were set according
to maskrcnn-benchmark8.
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