文献の詳細
論文の言語 | 日本語 |
---|---|
著者 | 黄瀬 浩一, Olivier Augereau, Charles Lima Sanches, 藤好 宏樹, 大社 綾乃, 山田 健斗, Kai Kunze, 石丸 翔也, Andreas Dengel |
論文名 | 様々なセンサを用いた読書行動解析 |
論文誌名 | 教育情報システム学会研究会報告 |
Vol. | 32 |
No. | 2 |
ページ | pp.53-60 |
発表場所 | 長野県松本市 |
査読の有無 | 無 |
年月 | 2017年7月 |
要約 | Most of the current e-learning systems rely on shallow sensing of learners such as achievement tests and log of usage of the systems. This poses a limitation to know internal states of learners such as confidence and the level of knowledge. To solve this problem, we propose to employ deeper sensing by using eye trackers, EOG, EEG, motion and physiological sensors. As tasks, we consider learning of English and Japanese. The sensing technologies described in this report includes low level estimations (the number of read words, the period of reading), document type recognition and identification of read words, as well as high level estimations about confidence of answers, the English ability in terms of TOEIC scores, unknown words encountered while reading English documents, and subjective and objective level of understanding of Japanese. Such functionality helps learners and teachers to know the internal states. |
- 次のファイルが利用可能です.
- BibTeX用エントリー
@InCollection{黄瀬2017, author = {黄瀬 浩一 and Olivier Augereau and Charles Lima Sanches and 藤好 宏樹 and 大社 綾乃 and 山田 健斗 and Kai Kunze and 石丸 翔也 and Andreas Dengel}, title = {様々なセンサを用いた読書行動解析}, booktitle = {教育情報システム学会研究会報告}, year = 2017, month = jul, volume = {32}, number = {2}, pages = {53--60}, location = {長野県松本市} }