Japanese / English

Detail of Publication

Text Language English
Authors Kai Kunze, Hitoshi Kawaichi, Koichi Kise and Kazuyo Yoshimura
Title The Wordometer - Estimating the Number of Words Read Using Document Image Retrieval and Mobile Eye Tracking
Journal Proc. 12th International Conference on Document Analysis and Recognition (ICDAR 2013)
Pages pp.25-29
Location Washington, DC, USA
Reviewed or not Reviewed
Presentation type Oral and Poster
Month & Year August 2013
Abstract We introduce the Wordometer, a novel method to estimate the number of words a user reads using a mobile eye tracker and document image retrieval. We present a reading detection algorithm which works with over 91 % accuracy over 10 test subjects using 10-fold cross validation. We implement two algorithms to estimate the read words using a line break detector. A simple version gives an average error rate of 13,5 % for 9 users over 10 documents. A more sophisticated word count algorithm based on support vector regression with an RBF kernel reaches an average error rate from only 8.2 % (6.5 % if one test subject with abnormal behavior is excluded). The achieved error rates are comparable to pedometers that count our steps in our daily life. Thus, we believe the Wordometer can be used as a step counter for the information we read to make our knowledge life healthier.
DOI 10.1109/ICDAR.2013.14
Back to list